Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system.

نویسندگان

  • M R Hirsch
  • M C Tiveron
  • F Guillemot
  • J F Brunet
  • C Goridis
چکیده

Mash1, a mammalian homologue of the Drosophila proneural genes of the achaete-scute complex, is transiently expressed throughout the developing peripheral autonomic nervous system and in subsets of cells in the neural tube. In the mouse, targeted mutation of Mash1 has revealed a role in the development of parts of the autonomic nervous system and of olfactory neurons, but no discernible phenotype in the brain has been reported. Here, we show that the adrenergic and noradrenergic centres of the brain are missing in Mash1 mutant embryos, whereas most other brainstem nuclei are preserved. Indeed, the present data together with the previous results show that, except in cranial sensory ganglia, Mash1 function is essential for the development of all central and peripheral neurons that express noradrenergic traits transiently or permanently. In particular, we show that, in the absence of MASH1, these neurons fail to initiate expression of the noradrenaline biosynthetic enzyme dopamine beta-hydroxylase. We had previously shown that all these neurons normally express the homeodomain transcription factor Phox2a, a positive regulator of the dopamine beta-hydroxylase gene and that a subset of them depend on it for their survival. We now report that expression of Phox2a is abolished or massively altered in the Mash1-/- mutants, both in the noradrenergic centres of the brain and in peripheral autonomic ganglia. These results suggest that MASH1 controls noradrenergic differentiation at least in part by controlling expression of Phox2a and point to fundamental homologies in the genetic circuits that determine the noradrenergic phenotype in the central and peripheral nervous system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular control of ciliary neuron development: BMPs and downstream transcriptional control in the parasympathetic lineage.

The generation of noradrenergic sympathetic neurons is controlled by BMPs and the downstream transcription factors Mash1, Phox2b, Phox2a and dHand. We examined the role of these signals in developing cholinergic parasympathetic neurons. The expression of Mash1 (Cash1), Phox2b and Phox2a in the chick ciliary ganglion is followed by the sequential expression of panneuronal, noradrenergic and chol...

متن کامل

MASH1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity.

We have investigated the genetic circuitry underlying the determination of neuronal identity, using mammalian peripheral autonomic neurons as a model system. Previously, we showed that treatment of neural crest stem cells (NCSCs) with bone morphogenetic protein-2 (BMP-2) leads to an induction of MASH1 expression and consequent autonomic neuronal differentiation. We now show that BMP2 also induc...

متن کامل

The Phox2 homeodomain proteins are sufficient to promote the development of sympathetic neurons.

The development of sympathetic neurons is controlled by a network of transcriptional regulators, including the paired homeodomain proteins Phox2a and Phox2b. To understand the role of Phox2 proteins in more detail, the effect of Phox2 overexpression was analysed in the avian peripheral nervous system. Phox2a expression in neural crest cultures elicited a strong increase in the number of sympath...

متن کامل

Essential role of Gata transcription factors in sympathetic neuron development.

Sympathetic neurons are specified during their development from neural crest precursors by a network of crossregulatory transcription factors, which includes Mash1, Phox2b, Hand2 and Phox2a. Here, we have studied the function of Gata2 and Gata3 zinc-finger transcription factors in autonomic neuron development. In the chick, Gata2 but not Gata3 is expressed in developing sympathetic precursor ce...

متن کامل

Insm1 (IA-1) is a crucial component of the transcriptional network that controls differentiation of the sympatho-adrenal lineage.

Insm1 (IA-1) encodes a Zn-finger factor that is expressed in the developing nervous system. We demonstrate here that the development of the sympatho-adrenal lineage is severely impaired in Insm1 mutant mice. Differentiation of sympatho-adrenal precursors, as assessed by the expression of neuronal subtype-specific genes such as Th and Dbh, is delayed in a pronounced manner, which is accompanied ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 125 4  شماره 

صفحات  -

تاریخ انتشار 1998